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Multiway Systems

The network systems that we discussed in the previous section do not

have any underlying grid of elements in space. But they still in a sense

have a simple one-dimensional arrangement of states in time. And in fact,

all the systems that we have considered so far in this book can be thought

of as having the same simple structure in time. For all of them are

ultimately set up just to evolve progressively from one state to the next.

Multiway systems, however, are defined so that they can have not

just a single state, but a whole collection of possible states at any given step. 

The picture below shows a very simple example of such a system. 

Each state in the system consists of a sequence of elements, and

in the particular case of the picture above, the rule specifies that at each

step each of these elements either remains the same or is replaced by a

pair of elements. Starting with a single state consisting of one element,

the picture then shows that applying these rules immediately gives two

possible states: one with a single element, and the other with two. 

Multiway systems can in general use any sets of rules that define

replacements for blocks of elements in sequences. We already saw

exactly these kinds of rules when we discussed sequential substitution

systems on page 88. But in sequential substitution systems the idea was

to do just one replacement at each step. In multiway systems, however,

A very simple multiway system in
which one element in each sequence
is replaced at each step by either one
or two elements. The main feature of
multiway systems is that all the
distinct sequences that result are kept. 
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the idea is to do all possible replacements at each step—and then to

keep all the possible different sequences that are generated. 

The pictures below show what happens with some very simple

rules. In each of these examples the behavior turns out to be rather

simple—with for example the number of possible sequences always

increasing uniformly from one step to the next.

In general, however, this number need not exhibit such uniform

growth, and the pictures below show examples where fluctuations occur. 

Examples of simple multiway systems. The number of distinct sequences at step  in these three systems is respectively
,  and  (which increases approximately like ). 
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(b) differencesExamples of multiway systems with slightly more complicated behavior. The plots on the
right show the total number of possible states obtained at each step, and the differences of
these numbers from one step to the next. In both cases, essentially repetitive behavior is
seen, every 40 and 161 steps respectively. Note that in case (a), the total number of possible
states at step  increases roughly like , while in case (b) it increases only like . t t 2 t
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But in both these cases it turns out to be not too long before these

fluctuations essentially repeat. The picture below shows an example

where a larger amount of apparent randomness is seen. Yet even in this

case one finds that there ends up again being essential repetition—

although now only every 1071 steps.
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A multiway system with behavior that shows some signs of apparent randomness. The rule for this system involves three possible
replacements. Note that the first replacement only removes elements and does not insert new ones. In the pictures sequences
containing zero elements therefore sometimes appear. At least with the initial condition used here, despite considerable early apparent
randomness, the differences in number of elements do repeat (shifted by 1) every 1071 steps. 
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If one looks at many multiway systems, most either grow

exponentially quickly, or not at all; slow growth of the kind seen on the

facing page is rather rare. And indeed even when such growth leads to a

certain amount of apparent randomness it typically in the end seems to

exhibit some form of repetition. If one allows more rapid growth,

however, then there presumably start to be all sorts of multiway

systems that never show any such regularity. But in practice it tends to

be rather difficult to study these kinds of multiway systems—since the

number of states they generate quickly becomes too large to handle. 

One can get some idea about how such systems behave, however,

just by looking at the states that occur at early steps. The picture below

shows an example—with ultimately fairly simple nested behavior.

The pictures on the next page show some more examples.

Sometimes the set of states that get generated at a particular step show

essential repetition—though often with a long period. Sometimes this

set in effect includes a large fraction of the possible digit sequences of a

given length—and so essentially shows nesting. But in other cases there

is at least a hint of considerably more complexity—even though the

total number of states may still end up growing quite smoothly.

step 1 step 2 step 3 step 4
step 5

step 6
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step 10

The collections of states generated on successive steps by a simple multiway system
with rapid growth shown on page 205. The particular rule used here eventually
generates all states beginning with a white cell. At step  there are 
states; a given state with  white cells and  black cells appears at step . 

t Fibonacci[t + 1]

m n 2 m+ n - 1



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

208

Looking carefully at the pictures of multiway system evolution

on previous pages, a feature one notices is that the same sequences

often occur on several different steps. Yet it is a consequence of the

basic setup for multiway systems that whenever any particular

sequence occurs, it must always lead to exactly the same behavior. 

So this means that the complete evolution can be represented as

in the picture at the top of the facing page, with each sequence shown

explicitly only once, and any sequence generated more than once

indicated just by an arrow going back to its first occurrence.

(a) (step 75) (b) (step 25) (c) (step 60) (d) (step 500)

(e) (step 100) (f ) (step 250) (g) (step 75) (h) (step 400) ( i) (step 11) ( j) (20) (k) (13) ( l) (12) (m) (12)

( i) ( j ) (k) ( l) (m)

(e) ( f ) (g) (h)

(a) (b) (c) (d)Collections of states generated at particular
steps in the evolution of various multiway
systems. Rule (k) was shown on the
previous page; rules (d) and (f) on page 205.
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But there is no need to arrange the picture like this: for the whole

behavior of the multiway system can in a sense be captured just by

giving the network of what sequence leads to what other. The picture

below shows stages in building up such a network. And what we see is

that just as the network systems that we discussed in the previous

section can build up their own pattern of connections in space, so also

multiway systems can in effect build up their own pattern of

connections in time—and this pattern can often be quite complicated.

The evolution of a multiway
system, first with every
sequence explicitly shown
at each step, and then with
every sequence only ever
shown once. 

step 1 step 2 step 3 step 4

step 5 step 6 step 7 step 8

The network built up by the evolution of the multiway system from the top of the page. This network in effect represents a network
of connections in time between states of the multiway system. 




